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Abstract

Artificial potential function methods (APFMs) are a class of computationally

inexpensive control methods for driving a system to a desired goal while avoiding

obstacles. Although APFMs have been applied successfully to a wide range of systems

since the late 1980s, these control methods do have notable drawbacks. The general

suboptimality of APFM results is one of these drawbacks, which is due to the fact

that APFMs contain no cost function in their formulation.

This thesis first develops a new continuous control APFM for fully actuated sys-

tems called the Velocity Artificial Potential Function (VAPF) Method, which causes

the system velocity to converge to the negative gradient of an artificial potential

function. Then, methods for increasing APFM optimality are studied. First, an

investigation is undertaken to determine if placing an APFM into an optimal con-

trol framework is a practical way of addressing the suboptimality of APFMs. While

effective at increasing optimality of APFM results, this approach proves to be too

computationally expensive to be practical. Finally, the Adaptive Artificial Potential

Function developed by Muñoz is studied and implemented via the VAPF Method.

This approach produces results with higher optimality than traditional APFMs but

with negligibly greater computational expense.
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Continuous Control Artificial Potential Function

Methods and Optimal Control

I. Introduction and Motivation

1.1 Artificial Potential Functions

An interesting problem in the field of guidance, navigation, and control (GNC) is

how to drive a system from one state to another while avoiding certain regions, such

as physical obstacles. One approach to solve such problems is the use of artificial

potential function methods (APFMs), which have seen application in a wide variety

of systems, including robotic manipulators, spacecraft, and autonomous road vehicles

[1–3]. APFMs involve the creation of a scalar-valued, nonnegative artificial potential

function (APF) in the system’s workspace. The APF has its global minimum at the

system’s goal location. If the system follows a path of decreasing potential, then it

will converge to the goal. Typically, an APF is composed from the superposition of

two types of functions: attractive potentials and repulsive potentials. The attractive

potential is a bowl- or well-shaped function (such a quadratic) whose global minimum

is the goal point. Repulsive potentials are functions with large value near obstacles

and small (or zero) value far from obstacles.

Figure 1.1 illustrates the construction of an APF. A planar workspace with two

circular obstacles is depicted in Figure 1.1(a). Note that, for ease of viewing, the

planar obstacles are shown as cylinders coming out of the plane, and the goal point

is shown as a red dot. The attractive potential is shown in Figure 1.1(b); a quadratic

attractive potential is used here. The repulsive potentials are depicted in Figure

1.1(c); Gaussian functions are used in this instance. Finally, Figure 1.1(d) shows the

complete APF formed by the superposition of the attractive and repulsive potentials.
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(a) Workspace with obstacles (b) Attractive potential

(c) Repulsive potential (d) Resulting APF

Figure 1.1: Construction of an APF
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Typically, APFMs attempt to drive the system along the negative gradient

direction of the APF. An example of such a scheme for a vehicle with impulsive control

is given here: A vehicle proceeds from an initial condition under its own dynamics.

At every time step, the APF gradient is calculated at the vehicle’s location. If the

angle between the vehicle’s velocity vector and the negative of the APF gradient is

larger than some tolerance, then a control input is generated to make the vehicle’s

velocity equal to the negative of the APF gradient. Otherwise, the vehicle proceeds

without any control input. Thus, the path of the vehicle is analogous to the steepest

descent on the potential surface. As seen in this scheme, the AFPM requires no path

planning and relies only on the current APF information.

One significant advantage of APFMs is their computational efficiency. Be-

cause the APF itself is created from analytical expressions, such as Gaussians and

quadratics, the resulting control commands are also analytical expressions. Even if

the workspace contains many obstacles, the control commands to avoid those obstacles

and converge to the goal are analytical.

There are two major drawbacks to AFPMs. The first is the existence of spurious

local minima in the APF. A vehicle conducting a steepest descent on the APF can

become stuck in the local minima, and will not converge to the goal. The local

minima exist in locations where the gradients of the attractive potential and repulsive

potentials add to zero. This thesis does not investigate the challenges of local minima

and will consider only APFs without them.

The second drawback is the suboptimal performance from APFMs. The APF

formulation does not incorporate any cost function (such as time, fuel consumption,

etc.) and thus the system trajectories are generally suboptimal with respect to such

cost functions. Improvement of APFM performance is a major area of investigation

for this thesis.
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1.2 Optimal Control and APFs

While APFMs provide computationally efficient control schemes for traveling

to a goal and simultaneously avoiding obstacles, an area of improvement should be to

improve their optimality with respect to some cost function. In addition, it is desired

that such optimizations should not diminish the computational advantage of APFMs.

In theory, the optimization of an APFM could be less computationally expensive than

solving an optimal control problem with obstacle avoidance path constraints. Consider

the following general optimal control problem for a system that must minimize a cost

function J while avoiding obstacles (represented by circles in two dimensions):

min
u

J = Φ (xf ) +

∫ tf

0

L (x,u) dt

subject to ẋ = f(x,u)

Rj − ‖r(t)− oj‖ ≤ 0 for j = 1 to l,

x(0) = x0

ψ (x(tf )) = 0

where x is the state vector, u is the control vector, Rj is the radius of the jth obstacle,

r(t) is the system’s position vector, oj is the position of the center of the jth obstacle,

l is the number of obstacles, and ψ is a terminal constraint. The inclusion of the

obstacle avoidance path constraints adds significantly to the computational expense

of solving such a problem because of the Lagrange multipliers associated with the

path constraints, along with the fact that they are non-convex constraints.

Now consider that the system is controlled via an APFM, and the control law

from the APFM is represented by

uAPF ≡ uAPF (x, APFM parameters) , (1.1)

where APFM parameters may be shaping parameters that determine the shape

of the APF and/or control parameters used in the APFM. With this control law

4



uAPF , the system automatically avoids obstacles, and thus the path constraints in

the optimal control problem may be removed. The independent variables for the

optimal control problem are now APFM parameters. That is, the optimal control

problem becomes

min
APFM parameters

J = Φ (xf ) +

∫ tf

0

L (x, APFM parameters) dt

subject to ẋ = f(x, APFM parameters)

bounds on APFM parameters.

x(0) = x0

ψ (x(tf )) = 0

The non-convex path constraints have been removed, and bounds on the APFM

parameters have been added. These constraints (oftentimes a positivity requirement)

are convex and are handled by numerical schemes with much less computational

expense than non-convex path constraints. Thus, it could be more computationally

efficient to solve an APFM optimization than a regular optimal control problem with

obstacle avoidance path constraints.

It should be noted that the optimum cost from solving the regular optimal

control problem may be impossible to achieve from an APFM optimization. This

is because APFMs typically allow only certain directions of motion (e.g. moving in

a direction of decreasing potential). Nonetheless, the possibility of computational

savings warrants investigation into APFM optimization.

1.3 Contributions to the Field

This thesis contributes to the field of APFMs in several ways. First, a new

continuous control APFM known as the Velocity Artificial Potential Function Method

is developed in Chapter III. The method is the first (to this author’s knowledge)

continuous control APFM which causes a system’s velocity to converge exponentially

5



to the negative gradient of the APF. Then, an investigation is undertaken to determine

if placing an APFM into an optimal control framework is a practical way of addressing

the suboptimality of APFMs. The results indicate that this approach, while effective

at increasing APFM optimality, is impractical due to the large computational expense

involved. Finally, the Adaptive Artificial Potential Function developed by Muñoz [4]

is combined with the Velocity Artificial Potential Function Method to produce results

with higher optimality than traditional APFMs but negligibly greater computational

expense.

1.4 Thesis Outline

This chapter has introduced the notion of APFMs and the optimization thereof.

Chapter II presents background information on AFPMs and a survey of literature in

the field. Chapter III details the development of several continuous control APFMs

that are applicable to fully actuated systems. A new method called the Velocity

Artificial Potential Function Method is developed and demonstrated in an example

application. Chapter IV examines ways of increasing the optimality of APFM results.

First, an APFM is placed into an optimal control framework and is then evaluated

on four test cases. Then, an Adaptive Artificial Potential Function is implemented

via the control method developed in Chapter III. Key conclusions are discussed in

Chapter V.
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II. Background and Literature Review

This chapter presents background information on AFPMs and reviews relevant liter-

ature in the APFM field. First, the various areas in which APFMs have been applied

are discussed. Then, the advantages and drawbacks of APFMs are presented, fol-

lowed by previous efforts aimed at addressing the drawbacks. After establishing this

background on APFMs, the research scope for this thesis is presented.

2.1 APFM Application Areas

APFMs have seen application in diverse fields of study. Their earliest usage

was in control of robotic manipulators. In fact, it was Khatib who developed the

first APFM during his doctoral work on obstacle avoidance for manipulators [5].

Khatib modeled the APF negative gradient as a force acting on the links of the

manipulator [1]. These artificial forces were then translated into torque inputs to the

joint actuators. APFMs have been applied to numerous other aspects of manipulator

control, including tentacle manipulators [6] and human-manipulator interaction [7].

APFMs have also been applied extensively to spacecraft rendezvous and for-

mation flight. In the 1990s, Lopez and McInnes introduced an APFM where the

APF itself was considered to be a Lyapunov function.1 In this method, the chase

vehicle proceeded under its own open-loop dynamics (the Clohessy-Wiltshire equa-

tions2) until the time rate of change of potential became nonnegative. At that time,

a thrust impulse was applied to make the chase vehicle’s velocity a scalar multiple of

the negative gradient of the APF. In effect, the method interpreted the negative APF

gradient as a desired velocity field, and corrective impulses were applied whenever the

chase vehicle velocity deviated from the negative gradient direction by π/2 radians. A

separate terminal guidance routine was used to ensure docking along a specific axis.

Other spacecraft control papers have implemented continuous control APFMs which

interpret the negative APF gradient as an acceleration field, and damping is applied

1Lyapunov functions are discussed in Section 3.2.
2The Clohessy-Wiltshire equations are introduced in Section 3.5.
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to eliminate oscillation around the goal point [8, 9]. Such a method is described in

detail in Section 3.2.

APFMs have been applied in various other fields where motion planning or

guidance is required. In [10], Roussos et al. used an APFM as a low-level controller

within a model predictive control scheme. The authors successfully applied their

method to a conflicted air traffic control scenario with wind uncertainty. In [11],

Zhenhai et al. investigated the use of an APFM to generate preview trajectories for

an automatic lanekeeping system in autonomous road vehicles. Areas of application

outside of engineering exist as well. For instance, Ulutas et al. used an APFM to

study how protein molecules fold to arrive at their equilibrium configuration [12].

This section has reviewed a few of the many areas in which APFMs have been

successfully applied. Their computational efficiency and ease of accounting for obsta-

cles have made APFMs an attractive option in almost any field where motion planning

and guidance are required.

2.2 Advantages of APFMs

The primary advantage of APFMs is that they provide a computationally effi-

cient scheme for driving a system to its desired goal while avoiding collisions with ob-

stacles. This computational efficiency is achieved because the required control inputs

are obtained from analytical expressions. This attribute makes APFMs attractive for

use on systems where onboard computational power is constrained, such as in small

spacecraft.

An example will be presented here to demonstrate the simplicity of APFM

control laws. This example comes from Lopez and McInnes [2], who wrote one of the

earliest papers that applied an APFM to spacecraft rendezvous. For the construction

of the APF, φ, the authors chose a quadratic function for the attractive potential:

φatt(r) = rᵀMr, (2.1)

8



where r is the chase vehicle position vector, and M is a positive definite matrix. The

repulsive potentials, which impose areas of high potential near obstacles, were chosen

as Gaussian functions:

φrep,i(r) = λi exp
(
−σ−1i (r − robs,i)ᵀNi(r − robs,i)

)
, (2.2)

where robs,i is the position of the center of the ith obstacle, and λi, σi, and Ni represent

different shaping parameters chosen by the designer. The complete φ was then

φ = φatt +
m∑
i=1

φrep,i, (2.3)

where m is the number of obstacles.

To obtain the impulsive control law, φ was interpreted as a Lyapunov function,

and the condition for asymptotic convergence to the goal (the origin) was that

φ̇(r, ṙ) < 0 ∀r 6= 0. (2.4)

Whenever φ̇ < 0 was satisfied, the chase vehicle was allowed to drift under its own

dynamics. Then, whenever φ̇ vanished, an impulsive velocity change was effected to

maintain φ̇ < 0. The impulsive velocity change was

∆ṙ = −k∇φ− ṙ

= −2kMr + 2k
m∑
i=1

λiσ
−1
i exp

(
−σ−1i (r − robs,i)ᵀNi(r − robs,i)

)
Ni(r − robs,i)− ṙ,

(2.5)

where k is a constant positive scalar. In effect, this impulsive control law corrects the

velocity of the chase vehicle to be a scalar multiple of −∇φ whenever φ̇ vanishes. It

can be seen that the required impulse in (2.5) is an analytic expression that can be

evaluated in real time even with modest computational resources.
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2.3 Drawbacks of APFMs

One of the major drawbacks of APFMs is the existence of local minima that can

cause a vehicle to become stuck away from its goal. These local minima are created

in locations where

∇φatt = −∇φrep. (2.6)

A common source of local minima is two or more obstacles that are in close proximity

to each other, as depicted in Figure 2.1. A single obstacle also creates a saddle point

Figure 2.1: Typical Local Minimum Caused by Two Obstacles in Close Proximity

along the line between the obstacle and the goal. Saddle points, however, are of

less concern than local minima because they are unstable equilibria, and so vehicles

are much less likely to become trapped there. Several attempts to address the local

minimum problem are addressed in Section 2.4.

Another significant drawback of APFMs is their suboptimal performance. APFM

formulations typically do not incorporate any cost function; APFM trajectories are

the result of the shape of the APF itself and any control parameters used. In most

cases the APF shaping parameters and control parameters are fixed values which

must be chosen based upon the designer’s experience. APFMs can also often cause

abrupt initial accelerations and obstacle avoidance maneuvers that give excessively

10



wide berth. Additionally, the shape of the APF is not reflective of the system’s under-

lying dynamics. Therefore, gradient-following trajectories on static APFs cannot take

advantage of any underlying dynamics that could help to minimize a cost function

such as control. Section 2.5 describes several efforts aimed at increasing the optimality

of APFMs.

2.4 Methods Addressing the Local Minimum Problem

Various researchers have investigated solutions to the local minimum problem.

In [13], Vadakkepat et al. introduced an algorithm that imposed an additional “es-

cape force” upon the vehicle whenever the APF gradient fell below certain thresh-

olds. While the escape force algorithm proved effective for avoiding local minima, the

threshold values and escape force parameters were chosen by a genetic algorithm3,

thereby reducing some of the simplicity which makes APFMs attractive.

In [9], Ahsun proposed a local minimum avoidance algorithm for spacecraft in

formation flight maneuvers. First, the locations of all local minima in the workspace

had to be computed. Then, whenever a spacecraft came within some threshold dis-

tance ε of a local minimum, an additional acceleration perpendicular to the space-

craft’s velocity was commanded. This algorithm was proven to provide asymptotic

convergence to the desired goal location even when local minima were present. How-

ever, the algorithm required pre-calculation of all local minimum locations, which

can be very computationally intensive for complicated geometries or geometries with

moving obstacles.

In [14], Rimon and Koditschek derived a specialized form of APF known as

a navigation function, which is devoid of local minima except for the desired goal

position. All other critical points on the navigation function are unstable saddle

points. The special construction proposed by Rimon and Koditschek is remarkable in

that it can be applied to any generalized sphere world, thereby providing a feasible

3A genetic algorithm is a heuristic method for solving optimization problems based on the process
of natural selection.
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solution to the robot navigation problem for any geometry where the obstacle shapes

can be mapped to n-spheres by a diffeomorphism.4 However, navigation functions

can be difficult to compute. In addition, navigation functions can possess gradients

that change rapidly from extremely shallow to extremely steep, resulting in velocity

profiles that may be undesirable.

While the methods above each provide means of circumventing the local min-

imum problem, they also introduce other drawbacks that detract from the original

simplicity of APFMs. The local minimum problem is still an area of active study for

APFM researchers.

2.5 Methods Addressing the Suboptimality Problem

The section describes several research efforts that addressed the drawback of

suboptimal APFM trajectories. All of the methods hinged upon modifying the shape

of the APF itself to create a trajectory with a higher degree of optimality with respect

to some cost function.

Vadakkepat et al. [13] examined the use of a genetic algorithm to vary the re-

pulsive potential shaping parameters of an APF to achieve optimal results. The cost

function was a sum of three geometric factors: goal factor, obstacle factor, and mini-

mum path length factor. An optimal trajectory would reach the goal while following

the shortest collision-free path. The genetic algorithm successfully varied the repul-

sive potential shaping factors through time to achieve trajectories that were more

optimal than those obtained with a static APF.

In his research, Ahsun [9] noted the problem of large goal-convergence times for

APFM trajectories. This slow convergence occurs because the gradient of the APF

approaches zero as the system approaches the goal, and therefore the system velocity

tends to zero. As a result, systems can spend a large amount of time in the vicinity of

the goal before convergence criteria are met. To remedy this problem, Ahsun intro-

4A diffeomorphism is a smooth, differentiable mapping.
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duced Potential Function Shaping, whereby additional terms are added to the APF

which steepen the gradient only in the vicinity of the goal. With this simple modifica-

tion, the goal-convergence times in Ahsun’s satellite formation maneuver simulations

were greatly reduced. Potential Function Shaping added no additional computational

expense since only a static term was added to the APF.

Muñoz also sought to address the suboptimalty of APFM trajectories, specifi-

cally in the case of propellant consumption during close range spacecraft rendezvous

[4]. Muñoz noted that gradient-following trajectories generated by APFMs did not

reflect the underlying system dynamics, but rather only the geometrical shape of the

APF itself. In the simple case of an APF with no obstacles, a gradient-following

trajectory would follow a straight line toward the goal. The fact that the shape of the

APF had no relation to the dynamics of the system meant that APFM trajectories

could not take advantage of the underlying dynamics of the system to achieve lower

propellant consumption during rendezvous. Muñoz also noted the problem of large

convergence times. To address these problems, Muñoz devised an Adaptive Artifi-

cial Potential Function (AAPF) where the gradient of the attractive potential would

adapt with time to match a prescribed velocity profile. By setting a desired two-burn

rendezvous as the prescribed velocity profile, Muñoz achieved both lower propellant

consumption and shorter convergence times compared to cases with static APFs. It

should be noted that only the attractive potential was adapting in the AAPF scheme;

the repulsive potentials for obstacles remained constant. That is, the adaptive at-

tractive potential allowed the spacecraft to follow the prescribed velocity profile when

far away from obstacles; the static repulsive potentials caused the vehicle to deviate

from the prescribed velocity profile in order to avoid collisions. The AAPF scheme

added very little computational expense because the adapting shaping parameters

were obtained through a simple forward propagation. The AAPF methodology will

be examined in greater detail in Section 4.5.

While the methods described in this section successfully increased APFM opti-

mality in their respective applications, they also possess limitations. In the work of
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Vadakkepat et al., the cost functions that are minimized are only geometric in nature

and are not related to the system dynamics. In addition, their methodology has no

means of imposing boundary conditions or transfer times on the trajectories. The use

of a genetic algorithm also increases the computational complexity of the problem.

Ahsun’s Potential Function Shaping, while successful at decreasing convergence time

in the vicinity of the goal, is somewhat limited otherwise. The method is not generally

applicable to the minimization of other cost functions, such as control usage. In ad-

dition, parameters for the additional APF terms must be chosen based only upon the

designer’s experience. Regarding Muñoz’s AAPF scheme, one limitation is that its

increased optimality hinges upon the prescription of a reference velocity profile with

optimal characteristics. Such a desired velocity profile may be unknown for complex

problems. Additionally, because only the attractive potential is adaptive, the increase

in optimality may be small for problem geometries with strongly influential obstacles.

2.6 Scope of Work

The first task of this research is to develop, in Chapter III, a continuous-control

APFM for fully actuated systems. This APFM should cause the system velocity to

converge to the negative gradient of the APF. To this author’s knowledge, no such

continuous control scheme has been previously developed, although related impulsive

control schemes do exist (e.g. as shown in Section 2.2). This continuous control

scheme will be illustrated in an idealized spacecraft rendezvous scenario.

The second half of the research, presented in Chapter IV, will investigate the

possibility of increasing the optimality of the APFMs while maintaining their most

attractive feature - computational efficiency. Figure 2.2 depicts the research space

for APFM optimality. At the bottom left are located traditional, static APFMs with

low optimality but low computational expense. On the other hand, optimal control

solutions provide high optimality at large computational cost. The promising middle

ground between these two extremes warrants investigation.
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Figure 2.2: Research Space for APFM Optimality

This investigation will be accomplished by transcribing the APFM directly into

an optimal control framework. Once in the optimal control framework, control pa-

rameters within the APFM will serve as the independent variables to be solved by

the optimal control software. There is a possibility of computational savings in using

this approach because obstacle-avoidance path constraints in the problem statement

are removed. Additionally, as an alternative to the optimal control framework, the

AAPF of Muñoz will be combined with the continuous control method from Chapter

III and applied in an example scenario.
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III. Continuous Control Method Development

This chapter details the development of several continuous control APFMs for fully

actuated systems. It is desired to obtain a method which causes the system’s velocity

to be the negative gradient of the APF. Several methods are examined, ultimately

leading to the Velocity Artificial Potential Function Method in Section 3.3. A brief

discussion on APF construction is then followed by an example application of the

Velocity Artificial Potential Function Method.

3.1 Method 1

This section presents Method 1, the first of three continuous control methods in

this chapter. Method 1 is a first-glance attempt at formulating a continuous control

law which causes a system’s velocity to equal −∇φ. All of the methods investigated

in this chapter are first developed on a simple problem with one-dimensional double

integrator dynamics and a quadratic φ. Candidate methods deemed promising are

then generalized for application to other dynamics and forms of φ. The state-space

representation for the one-dimensional double integrator dynamics is

ẋ =

0 1

0 0

x+

 0

1
m

u, (3.1)

where m is the system mass. The APF used for the one-dimensional problem is

φ =
1

2
Mx2, (3.2)

where M is a positive definite shaping factor.

Method 1 begins with the premise that the system’s velocity should be equal to

the negative gradient of φ:

ẋ = −∇φ

= −Mx. (3.3)
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Taking the time derivative of (3.3) gives

ẍ = −Mẋ. (3.4)

Substituting (3.4) into (3.1) and solving for u yields

u = −Mmẋ. (3.5)

Substitution of (3.5) into (3.1) closes the loop and yields

ẋ =

0 1

0 −M

x. (3.6)

The eigenvalues for this closed-loop system are λ = 0 and λ = −M , so the system is

stable.

The analytical solution for the system in (3.6) is

x(t) = x0 +
ẋ0
M
− ẋ0
M

exp(−Mt). (3.7)

From inspection of the analytical solution, one can observe that the position will

converge to the origin only if ẋ0 = −Mx0. That is, only if the initial velocity exactly

matches −∇φ at the initial position. Thus, Method 1 is not effective at driving the

system to the goal when the system has an arbitrary initial state. The deficiency of

Method 1 comes from the inherent assumption in (3.3) that the velocity is equal to

−∇φ, rather than specifying −∇φ as a desired velocity. Method 1 was not pursued

further.

3.2 Lyapunov Method

3.2.1 Development on One-dimensional Problem. The Lyapunov Method,

which has been used in previous APFM-related works [8,9,15], combines the APF with

Lyapunov theory. Lyapunov theory gives a sufficient condition for the stability of a
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dynamic system [16]. Given a system ẋ = f(x), a Lyapunov Candidate Function V (x)

is defined as a scalar valued function that is positive definite and radially unbounded,

i.e.

V (0) = 0

V (x) > 0 ∀x 6= 0

|x| → ∞ ⇒ V (x)→∞.

The system is asymptotically stable if the time derivative of V is negative definite,

i.e.

V̇ (x) < 0 ∀x 6= 0. (3.8)

If V̇ (x) is only negative semidefinite, then the system is stable. In some cases,

LaSalle’s Invariance Principle may be used to show asymptotic stability even when

V̇ (x) is only negative semidefinite [17]. Again, these conditions are sufficient, but not

necessary, for system stability.

The Lyapunov Method creates a Lyapunov Candidate Function (LCF) which

incorporates the APF, φ. In this method, an acceleration which causes V̇ to be

negative semidefinite is chosen. Using the one-dimensional double integrator dynamics

and quadratic potential, (3.1) and (3.2), an LCF, V , is defined as

V (x, ẋ) =
1

2
Pẋ2 + φ

=
1

2
Pẋ2 +

1

2
Mx2, (3.9)

where P is a positive scalar. Differentiating V with respect to time yields

V̇ (x, ẋ) = Pẋẍ+Mxẋ. (3.10)
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To make V̇ negative semidefinite, the acceleration is chosen as

ẍ = − 1

P
(KAẋ+Mx) , (3.11)

where KA is a positive scalar. Substitution of this acceleration into (3.10) gives

V̇ (x, ẋ) = Pẋ

(
− 1

P
(KAẋ+Mx)

)
+Mxẋ

= −KAẋ
2, (3.12)

which is negative semidefinite. Therefore the system is stable. Additional analysis

using LaSalle’s Invariance Principle can be used to show that the system is, in fact,

asymptotically stable. In this simple case, linear analysis also proves asymptotic

stability.

Taking the acceleration expression (3.11) and substituting into the dynamics

(3.1) and then solving for u yields

u = −m
P

(KAẋ+Mx) . (3.13)

Substitution of this control into the dynamics closes the loop and yields

ẋ =

 0 1

−M
P
−KA

P

x. (3.14)

The eigenvalues of the closed-loop system are λ = −KA

2P
±
√(

KA

2P

)2 − M
P

. Since the

eigenvalues have a negative real part, the system is indeed asymptotically stable. The

following subsection generalizes the Lyapunov Method to higher dimensions, arbitrary

φ, and arbitrary fully actuated dynamics.

3.2.2 Generalization of the Lyapunov Method. Consider an arbitrary APF

φ in an n-dimensional space applied to a system with arbitrary second-order, fully
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actuated dynamics. It is desired to drive the system asymptotically to the origin. In

a similar manner to (3.9), an LCF is defined as

V (r, ṙ) =
1

2
ṙᵀPṙ + φ, (3.15)

where P is a positive definite matrix. The time derivative of V is

V̇ (r, ṙ) = ṙᵀPr̈ + ṙᵀ∇φ. (3.16)

In order to make V̇ negative semidefinite, the acceleration is chosen as

r̈ = −P−1 (KAṙ +∇φ) , (3.17)

where KA is a positive definite matrix. Substitution of this acceleration into (3.16)

yields

V̇ (r, ṙ) = −ṙᵀPP−1 (KAṙ +∇φ) + ṙᵀ∇φ

= −ṙᵀKAṙ − ṙᵀ∇φ+ ṙᵀ∇φ

= −ṙᵀKAṙ, (3.18)

which is negative semidefinite and thus the system is stable. If φ is free of spurious

local minima, then LaSalle’s Invariance Principle can be used to prove asymptotic

stability except for a thin set of initial conditions that drive the system to saddle

points of φ (an inherent feature in any φ which includes obstacles) [9]. Thus, (3.17)

defines an acceleration that drives the system to the goal and ensures that V is always

nonincreasing. Examination of (3.17) shows that the Lyapunov Method essentially

interprets −P−1∇φ as a prescribed acceleration field (rather than a velocity field) to

which a damping acceleration is applied. A sufficient, but not necessary condition

for obstacle collision avoidance is that the value of φ at obstacle boundaries must be
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greater than the initial value of V , i.e.

φ|obstacle boundaries ≥ V0 =
1

2
ṙᵀ0Pṙ0 + φ0. (3.19)

3.3 Velocity Artificial Potential Function Method

3.3.1 Development on One-dimensional Problem. While the Lyapunov

Method is effective at driving a system to its goal, one possible shortcoming of the

method is that it does not cause the system’s velocity to equal −∇φ. The Velocity

Artificial Potential Function (VAPF) Method was developed to drive a system with

velocity −∇φ. The concept of the VAPF Method is to define a second potential

function, called the velocity artificial potential function, in the velocity space of the

vehicle. The VAPF, represented by φv, has its desired goal (i.e. the minimum) located

at −∇φ. Then an acceleration is solved that causes the time derivative of the VAPF

to be negative semidefinite. This ensures that the system velocity converges to −∇φ.

The VAPF, φv, is defined as

φv =
1

2
(ẋdesired − ẋ)2

=
1

2
(−∇φ− ẋ)2

=
1

2
(Mx+ ẋ)2. (3.20)

Taking the time derivative of (3.20) gives

φ̇v = (Mx+ ẋ)(Mẋ+ ẍ). (3.21)

An acceleration must now be chosen that causes φ̇v to be negative semidefinite. More-

over, it is desirable that the acceleration cause φv to decay exponentially. Such an

acceleration would cause the system’s velocity to converge exponentially to −∇φ. The
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acceleration is chosen as

ẍ = −Mẋ−Kd(Mx+ ẋ), (3.22)

where Kd is a positive scalar gain. Substituting (3.22) into (3.21) yields

φ̇v = (Mx+ ẋ)(Mẋ+ (−Mẋ−Kd(Mx+ ẋ)))

= Kd(Mx+ ẋ)(−Mx− ẋ)

= −Kd(Mx+ ẋ)2

= −2Kdφv, (3.23)

which is the time derivative of a decaying exponential. Thus, φv may be expressed as

function of time as

φv(t) = φv,0 exp(−2Kdt). (3.24)

And therefore the square of the difference between the desired velocity (−∇φ) and

the actual velocity exponentionally converges to zero.

The VAPF Method acceleration in (3.22) can be used in conjunction with the

dynamics (3.1) to solve for u:

u = −m(KdMx+ (Kd +M)ẋ). (3.25)

Closing the loop with this control law gives

ẋ =

 0 1

−KdM −(M +Kd)

x. (3.26)

The resulting closed-loop eigenvalues are λ = −M , λ = −Kd. Because the eigenvalues

are negative definite, the system converges asymptotically to the origin. Thus, VAPF

Method inverts the system dynamics to drive to velocity to −∇φ. The following

subsection generalizes the VAPF Method.
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3.3.2 Generalization of the VAPF Method. Consider an arbitrary APF φ in

an n-dimensional space applied to a system with arbitrary second-order, fully actuated

dynamics. It is desired that the system’s velocity, ṙ, be equal to −∇φ. Define the

VAPF as

φv =
1

2
(∇φ+ ṙ)ᵀ(∇φ+ ṙ). (3.27)

Note that (3.27) may expanded as

φv =
1

2
(∇φ1 + ṙ1)

2 +
1

2
(∇φ2 + ṙ2)

2 + · · ·+ 1

2
(∇φn + ṙn)2 (3.28)

= φv1 + φv2 + · · ·+ φvn , (3.29)

where φv,i is the specific VAPF for the ith component of velocity. The time derivative

of (3.27) is

φ̇v = (∇φ+ ṙ)ᵀ(H(φ)ṙ + r̈), (3.30)

where H(φ) is the Hessian of φ. Now r̈ must be chosen to cause φ̇v to be negative

semidefinite. Let

r̈ = −H(φ)ṙ −Kd(∇φ+ ṙ) (3.31)

where Kd is a diagonal, positive definite matrix whose ith diagonal entry is Kdi .

Substitution of this acceleration expression into (3.30) yields

φ̇v = (∇φ+ ṙ)ᵀ(H(φ)ṙ + (−H(φ)ṙ −Kd(∇φ+ ṙ)))

= (∇φ+ ṙ)ᵀKd(−∇φ− ṙ)

= −2 (Kd1φv1 +Kd2φv2 + · · ·+Kdnφvn) (3.32)

which is negative semidefinite by the definitions of φvi and Kdi . Given this time

derivative, φv may be expressed as a function of time as

φv(t) = φv1,0 exp(−2Kd1t) + φv2,0 exp(−2Kd2t) + · · ·+ φvn,0 exp(−2Kdnt). (3.33)
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Note that in the VAPF Method, an acceleration (3.31) has been defined which

causes the 2-norm of the difference between −∇φ and the system velocity to expo-

nentially converge to zero. Because of the assumption of a fully actuated system, this

acceleration is always achievable.

If the system dynamics are linear, the required control to achieve the VAPF

Method acceleration can be easily computed. Consider the dynamics of the fully

actuated, second-order linear system:

ẋ =

 0 I

Aacc

x+

 0

Bacc

u, (3.34)

where Aacc is the last n rows of the A matrix, and Bacc is the last n rows of the B

matrix. The state vector x is defined as

x =

r
ṙ

 .
Substitution of the VAPF Method acceleration from (3.31) into (3.34) and solving for

u gives

u = −B−1acc(H(φ)ṙ + Kd(∇φ+ ṙ) + Aaccx). (3.35)

3.4 APF Construction

The form of APF used herein is typical of several other works on APFM space-

craft control [4, 9, 15]. The attractive potential is a quadratic:

φatt =
1

2
rᵀMr, (3.36)

where M is a positive definite matrix. The repulsive potentials are Gaussian functions:

φrep,i =
1

2
λi exp(−r̃ᵀobs,iNir̃obs,i), (3.37)
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where the vector r̃obs,i is the vector pointing from the ith obstacle center to the cur-

rent position, i.e. r̃obs,i = r − robs,i. The parameter λi determines the overall height

of the repulsive potential. The matrix Ni is a positive definite matrix whose entries

determine the oblateness and orientation of the Gaussian function. Because all ob-

stacles considered here are circular, Ni is diagonal, with the diagonal entries being

identical. The magnitude of those diagonal entries determines how sharply the repul-

sive potential decays with distance from the obstacle center. Values that are too high

can cause the vehicle to maneuver away from the obstacle only when it is extremely

close, thereby resulting in excessive acceleration. Values that are too low cause the

obstacle’s influence to extend too far.

Once the values of M and Ni’s are chosen, the λi values are then computed

to guarantee collision avoidance. In the cases presented in Sections 3.5 and 4.2, the

VAPF Method guarantees that φ̇(t) ≤ 0. Therefore, a sufficient (but not necessary)

criterion for collision avoidance is that

φ|obstacle boundaries ≥ φ0. (3.38)

The value of each λi is chosen to enforce this criterion. This is accomplished by first

calculating the point on each obstacle boundary that is closest to the goal (the point

of lowest potential). Then, λi is chosen such that the value of φatt + φrep,i at that

location is equal to φatt(r0). This method of calculating λi assumes that: 1) the

effect of the repulsive potential is negligible at the chase vehicle’s initial position, and

2) that the obstacles are far enough apart such that their influence at each other’s

location is negligible. These assumptions are valid for the geometries studied herein.

3.5 VAPF Method Example Application

The following example demonstrates the application of the VAPF Method in a

scenario more complicated than the one-dimensional double integrator. This scenario

presents two spacecraft in close proximity undergoing rendezvous in the same orbital
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plane. The governing dynamics are the Clohessy-Wiltshire (CW) equations, which

are the linearized equations of motion for a chase vehicle (CV) in close proximity to

a target vehicle (TV) in circular orbit [18,19]:


ẋ

ẏ

ẍ

ÿ

 =


0 0 1 0

0 0 0 1

3ω2 0 0 2ω

0 0 −2ω 0




x

y

ẋ

ẏ

+


0 0

0 0

1
m

0

0 1
m


u1
u2

 , (3.39)

where ω is the magnitude of orbital angular velocity. The TV is at the origin of the

reference frame, and the CV, whose position vector is r = [x y]ᵀ, approaches the

TV. The attractive potential utilized is a quadratic function, as given in (3.36). Five

obstacles are present in the workspace, and their repulsive potentials are Gaussian

functions as given in (3.37). The complete equations for φ and its first two spatial

derivatives are shown below:

φ =
1

2
rᵀMr +

1

2

5∑
i=1

λi exp(−r̃ᵀobs,iNir̃obs,i) (3.40)

∇φ = Mr −
5∑
i=1

λi exp(−r̃ᵀobs,iNir̃obs,i)Nir̃obs,i (3.41)

H(φ) = M +
5∑
i=1

λi exp(−r̃ᵀobs,iNir̃obs,i)(2Nir̃obs,ir̃
ᵀ
obs,iNi −Ni). (3.42)

The values of M and Ni chosen for this particular scenario are

M =

0.005 0

0 0.005

 (3.43)

Ni =

0.0008 0

0 0.0008

 for i = 1 to 5. (3.44)

The λi’s were chosen according to the procedure in Section 3.4. Obstacle radii and

locations of the obstacle centers are given in Table 3.1. The VAPF Method control
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Table 3.1: Obstacle Data for Rendezvous Simulation

Obstacle 1 Obstacle 2 Obstacle 3 Obstacle 4 Obstacle 5
xobs (m) 100 270 300 -200 160
yobs (m) 200 70 300 300 -100
R (m) 25 25 50 50 25

law in (3.35) can now be used to compute the appropriate control. Note that, in this

case, the matrices Aacc and Bacc are

Aacc =

3ω2 0 0 2ω

0 0 −2ω 0

 (3.45)

Bacc =

 1
m

0

0 1
m

 . (3.46)

A simulation using the VAPF Method control law was conducted with the initial

conditions,

x0 =


400

500

−0.7

−0.3


[m]

[m]

[m/s]

[m/s]

, (3.47)

and an orbital angular velocity of ω = 0.001127 rad/s (comparable to that of the

International Space Station). Additional parameters are m = 5kg and Kd = 0.1I.

The resulting trajectory is plotted on the surface of φ in Figure 3.1. The initial

position is marked with a green dot, and a red dot marks the terminal position. The

two-dimensional trajectory, state histories, control histories, and VAPF history are

shown in Figures 3.2(a) to 3.2(d). The trajectories clearly show that the CV suc-

cessfully maneuvered around obstacles to avoid collisions and converged to the TV’s

location (the origin). The VAPF history in Figure 3.2(d), shows that the numerical
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results for φv indeed matched the expected theoretical decay, which was in this case

φv(t) = φv,0 exp (−0.2t) . (3.48)

This exponential decay confirms that the CV velocity quickly converged from its initial

value to −∇φ.

Figure 3.1: Plot of φ with Trajectory

The simulation results also illustrate some of the drawbacks of APFMs that

were discussed in Chapter II. First, slow converge in the vicinity of the goal can

be noted in Figure 3.2(b). Examination of the trajectory also shows that the CV

gave much wider berth to the obstacles than was necessary. The maneuvers to avoid

the obstacles were also quite sudden, as evidenced by the peaky control histories in

Figure 3.2(c). Of course, these behaviors are simply a result of the CV traveling

with velocity −∇φ. The VAPF Method, like other APFMs, also has no consideration

of a cost function, and therefore the results seen here are suboptimal with respect

to typical cost functions, such as control usage. The following chapter investigates
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(a) Chase vehicle trajectory (b) Chase vehicle state histories

(c) Chase vehicle control histories (d) Velocity APF time history

Figure 3.2: Results for the VAPF Method Example
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how to bring some consideration of a cost function into an APFM and achieve more

optimal results.
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IV. Increasing the Optimality of APFMs

This chapter presents an investigation into increasing the optimality of APFMs. First,

optimal control theory is briefly reviewed in Section 4.1. Then, Section 4.2 develops

a modification of the VAPF Methods that adds flexibility, thereby providing freedom

for optimization. This modified method is put into an optimal control framework in

Section 4.3, and four cases of study are also introduced. In Section 4.4, the results for

those four cases are presented. The solutions to the original optimal control problem

(OCP) and the so-called hybrid OCP are compared in terms of computation time

and optimality with respect to the given cost function. Section 4.5 reviews the AAPF

developed by Muñoz [4] as another means to increase optimality, and the AAPF is

implemented via the VAPF Method.

4.1 Review of Optimal Control

Optimal control has its roots in the calculus of variations developed in the 1600s.

In 1639, Galileo Galilei posed one of the earliest OCPs, the brachistochrone problem

[20], whose goal is to find the shape of a piece of wire connecting two points such

that a bead sliding on the wire travels from the first point to the second in minimum

time. Newton, l’Hopital, Leibniz, the Bernoullis, and later Euler and Lagrange were

active in the 17th and 18th centuries in applying the calculus of variations to OCPs. In

fact, the necessary conditions of optimality for an OCP without path constraints are

termed the Euler-Lagrange equations. Since those early days, much progress has been

made in optimal control theory, including the development of Pontryagin’s Minimum

Principle, which gives the necessary conditions for an OCP with control or state

constraints [21]. Great advances in numerical solutions to OCPs mean that problems

once thought intractable are readily solved today on personal computers [22–24]. This

section provides only a brief overview of the vast field of optimal control.
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A general optimal control problem for minimizing a scalar cost function J can

be stated as

min
u

J = Φ (xf ) +

∫ tf

t0

L (x,u, t) dt

subject to:

the dynamics ẋ = f(x,u)

initial conditions t0 and x0

final conditions ψ (x(tf ), tf ) = 0

path constraints C (x(t),u(t), t) ≤ 0.

The solution methodologies for OCPs can be separated into two categories: indirect

and direct. Indirect methods use the techniques of the calculus of variations to derive

the necessary conditions for optimality. For problems without path constraints these

conditions are the well-known Euler-Lagrange equations. For problems with control

or state constraints, the necessary conditions are given by Pontryagin’s Minimum

Principle. Problems with mixed state and control constraints must use even more

general necessary condtions [25]. The necessary conditions for optimality result in a

boundary value problem (BVP) with coupled differential and algebraic equations. For

some simple problems, such as the brachistochrone and sphere geodesic problems, the

BVPs can be solved analytically [26]. In general, though, the BVPs must be solved

numerically using indirect shooting methods. The essence of indirect shooting meth-

ods is to guess values for unknown boundary values of the BVP and then integrate

numerically to the other end. The guess for the unknown boundary values is iterated

until the terminal conditions at the other end match the known values there. One

significant challenge with indirect shooting methods is that they may not converge if

the initial guess is too far from the true value [27]. Additionally, state and control

constraints further complicate indirect shooting methods because consideration must

be given to arcs in the problem where those constraints become active.
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Direct solution methods parameterize the controls and/or states and then trans-

late the OCP into a nonlinear programming (NLP) problem [28]. In the so-called

direct shooting method, only the control is parameterized into a functional form with

unknown parameters. Those parameters then become the independent variables in a

NLP problem. For each guessed control sequence, the state dynamics are integrated

numerically, and the cost and constraint values calculated. The NLP solver perturbs

the parameters for the control until a minimum cost is reached and any path con-

straints and boundary conditions are satisfied. Collocation methods are another class

of direct solution methods, which have been used extensively in recent years. Col-

location methods parameterize both the state and control in terms of certain basis

functions, such as Lagrange polynomials [24]. The problem is broken up into a number

of points in the domain (called collocation points), and the approximating functions

are chosen such that the dynamics of the problem are satisfied at those collocation

points. An NLP is combined with this collocation scheme to minimize the given

cost function. Two popular optimal control software packages, DIDO and GPOPS-II,

both utilize collocation methods (in particular, global orthogonal collocation) [29,30].

GPOPS-II is used to obtain the results in Section 4.4.

4.2 Variable Speed and Direction VAPF Method

The VAPF Method developed in Chapter III causes a system’s velocity to con-

verge to −∇φ. However, the resulting gradient-following trajectories are generally

suboptimal because they are based on only the shape of φ. In order to find more

optimal trajectories, flexibility must be added to allow the system’s velocity to devi-

ate from −∇φ. An important issue then is how to add this flexibility to the method

while still preventing obstacle collisions. The key realization is that when the sys-

tem is moving, it will avoid obstacle collisions so long as it moves in a direction of

nonincreasing φ. Stated another way, the vehicle may possess any velocity so long as

ṙ · ∇φ ≤ 0. (4.1)
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In this new method, termed the Variable Direction and Speed VAPF (VDSVAPF)

Method, the desired velocity is written not as −∇φ, but rather a rotated and scaled

vector obtained from −∇φ. To ensure nonincreasing φ (and therefore collision avoid-

ance), the angle of rotation away from −∇φ, θ, is limited to

−π
2
≤ θ ≤ π

2
. (4.2)

The scalar multiplier, KS, is limited to nonnegative values. Thus, the desired velocity

in the VDSVAPF Method is written as

ṙ = −KSKR∇φ, (4.3)

where KR is a rotation matrix defined as

KR =

cos θ − sin θ

sin θ cos θ

 (4.4)

for problems in two dimensions. (Alternate formulations for the desired velocity

are discussed in Appendix A.) In a sense, KS can be thought of as a “gas pedal”

which modulates speed (relative to the magnitude of ∇φ), and KR can be thought

of as a “steering wheel” which rotates the velocity vector. Another interpretation is

to envision the surface of φ as a fixed landscape. The system may move over this

landscape in any manner so long as φ is nonincreasing.

With the new expression for desired velocity now defined, the analysis to de-

termine an acceleration law will now proceed in the same manner as for the VAPF

Method. First, the VAPF is defined as

φv =
1

2
(ṙdesired − ṙ)ᵀ (ṙdesired − ṙ)

=
1

2
(KSKR∇φ+ ṙ)ᵀ (KSKR∇φ+ ṙ) . (4.5)
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Now the time derivative of φv is

φ̇v = (KSKR∇φ+ ṙ)ᵀ
(
K̇SKR∇φ+KSK̇R∇φ+KSKRH(φ)ṙ + r̈

)
, (4.6)

where K̇R is

K̇R = θ̇

− sin θ − cos θ

cos θ − sin θ

 (4.7)

In order to ensure that ṙ converges to −KSKR∇φ, an acceleration must be chosen

which causes φ̇v ≤ 0. The acceleration is chosen to be

r̈ = −K̇SKR∇φ−KSK̇R∇φ−KSKRH(φ)ṙ−KD (KSKR∇φ+ ṙ) ≡ r̈VDSVAPF, (4.8)

where again KD is a positive definite diagonal matrix. Substitution of (4.8) into (4.6)

yields the following expression for φ̇v

φ̇v = − (KSKR∇φ+ ṙ)ᵀKD (KSKR∇φ+ ṙ) , (4.9)

which is a nonpositive quantity, and therefore ṙ converges to −KSKR∇φ. The con-

vergence is exponential, as shown in Section 3.3.2.

The VDSVAPF Method has been developed as a way to allow the system ve-

locity to deviate from −∇φ by means of the rotation angle, θ, and the speed scalar,

KS. This added flexibility can be utilized to allow an optimal control solver to find a

more optimal trajectory compared to strictly following −∇φ. Section 4.3 details how

the VDSVAPF Method is placed into an optimal control framework.

4.3 Formulation of the Hybrid Optimal Control Problem

This section first presents the OCP under investigation. From here forward,

this problem will be referred to as the “original OCP.” Then, the original OCP will

be transformed into the so-called “hybrid OCP” by the insertion of the VDSVAPF

Method dynamics. Finally, four cases of study are introduced.
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4.3.1 The Original OCP and the Hybrid OCP. The OCP of interest in

this section (i.e. the original OCP) is a quadratic cost, minimum control satellite

rendezvous problem. The problem is given as

min
u

J =

∫ tf

0

uᵀu dt

subject to 2-D CW dynamics

Rj − ‖r(t)− oj‖ ≤ 0 for j = 1 to l,

‖r(tf )‖ ≤ 1 m, ‖ṙ(tf )‖ ≤ 0.1 m/s

x(0) = x0.

The two-dimensional CW equations are given in (3.39).

Now the hybrid OCP is formed by inserting the VDSVAPF Method into the

framework of the original OCP. The first challenge at hand is how to write the original

cost integrand (uᵀu) in terms of the VDSVAPF Method dynamics. For second-order,

fully actuated linear dynamics (e.g. the CW dynamics), the system input may be

written as

u = B−1acc (r̈VDSVAPF −Aaccx) , (4.10)

where r̈VDSVAPF is given in (4.8). Therefore the cost integrand in the hybrid OCP is

LVDSVAPF = (r̈VDSVAPF −Aaccx)ᵀB−1acc
ᵀB−1acc (r̈VDSVAPF −Aaccx) . (4.11)

The dynamics for the hybrid OCP are the VDSVAPF Method dynamics given in

(4.8). Additionally, the obstacle avoidance path constraints are removed from the

hybrid OCP because the VDSVAPF dynamics already enforce obstacle avoidance.
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The complete statement of the hybrid OCP is then

min
K̇S , θ̇

J =

∫ tf

0

LVDSVAPF dt

subject to r̈ = r̈VDSVAPF

KS(t) ≥ 0, −π
2
≤ θ(t) ≤ π

2

‖r(tf )‖ ≤ 1 m, ‖ṙ(tf )‖ ≤ 0.1 m/s

x(0) = x0.

The hybrid OCP has two additional states (KS and θ) compared to the original OCP.

The independent variables are no longer the components of thrust u, but rather the

VDSVAPF Method control parameters K̇S and θ̇.

4.3.2 Description of Four Test Cases. Four cases will be used to compare

the solutions of the original OCP and the hybrid OCP. Case 1 has no obstacles. The

initial conditions for the CV are r(0) = [0, 100] m and ṙ(0) = [0, 0] m/s, and tf = 50 s.

The purpose of Case 1 is to provide the simplest geometry possible, and to verify that

the hybrid OCP solution is working. Case 2 introduces a circular obstacle with a 15 m

radius at robs = [−10, 50] m. The initial conditions and tf remain the same as in Case

1. Case 3 is nearly identical to Case 2, with the only difference being that the obstacle

has been moved 5 meters to robs = [−5, 50] m. The primary purpose of Case 3 is to

demonstrate the sensitivity of the hybrid OCP solution to obstacle position. Finally,

Case 4 is another obstacle-free case. Initial conditions are r(0) = [0, 300] m and

ṙ(0) = [0, 1] m/s, and the final time is free within the bounds 1900 s ≤ tf ≤ 2000 s.

The purpose of Case 4 is to demonstrate a case where a gradient-following trajectory

looks vastly different from the optimal trajectory. The cases are summarized in Table

4.1.
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Table 4.1: Summary of Four Test Cases

r(0) (m) ṙ(0) (m/s) tf (s) robs (m) Obstacle Radius (m)
Case 1 [0, 100] [0, 0] 50 n/a n/a
Case 2 [0, 100] [0, 0] 50 [-10, 50] 15
Case 3 [0, 100] [0, 0] 50 [-5, 50] 15
Case 4 [0, 300] [0, 1] 1900 to 2000 n/a n/a

4.4 Results for the Hybrid OCP

For each of the four cases, both the original OCP and the hybrid OCP were

solved using an optimal control solver. A self-written optimal control solver with uni-

form discretization of the controls was initially implemented, but it required excessive

computation times to achieve sufficiently accurate results. Instead, the GPOPS-II

optimal control software was used [30]. All solver settings, such as initial mesh guess

and required tolerances were identical between the original OCP and the hybrid OCP.

4.4.1 Case 1 Results. The results for Case 1 are shown in Table 4.2 and

Figures 4.1 to 4.3. Table 4.2 compares the optimal costs, computation times,

Table 4.2: Tabulated Results for Case 1

Original OCP Hybrid OCP VAPF Method
Optimal Cost 22.364 22.364 n/a
Computation Time (s) 1.670 3.154 RT
tf (s) 50.0 50.0 471.1

and final time for Case 1. It can be seen that the optimal cost for the hybrid OCP

was identical to that of the original OCP. This indicates that the hybrid OCP was

set up correctly and produced identical results, despite being a different problem

formulation. The cost for the VAPF Method is not listed because comparison of

cost would be meaningless due to the fact that a final time cannot be specified for the

VAPF Method. The computation time for the original OCP was less than half of that

for the hybrid OCP. However, for this simple case, the computation times were on the

same order of magnitude. Subsequent cases will show that the hybrid OCP generally
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(a) Original OCP (b) Hybrid OCP

(c) VAPF Method

Figure 4.1: Trajectories for Case 1
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(a) Original OCP (b) Hybrid OCP

(c) VAPF Method

Figure 4.2: State Histories for Case 1
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(a) Original OCP (b) Hybrid OCP

(c) VAPF Method

Figure 4.3: Control Histories for Case 1
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requires much more computation time than the original OCP. Computation time

for the VAPF Method is listed as “RT” for “real-time” because the VAPF Method

requires no pre-computation, and the required control expression can be evaluated

instantaneously even with modest computational power.

Figure 4.1 shows the trajectories for Case 1. The green and red dots indicate the

initial and terminal points, respectively. The trajectories for the original and hybrid

OCPs were identical and followed a slightly curved route in order to take advantage

of the dynamics of the problem. In contrast, the VAPF Method caused the CV’s

velocity to converge to −∇φ exactly, creating a direct path toward the goal along the

y-axis. The state histories in Figure 4.2 confirm the identical results of the original

and hybrid OCPs. The additional states, KS and θ, are also shown in the state

histories for the hybrid OCP. Their varying behavior highlights the need to deviate

from −∇φ in order to achieve optimal results. For completeness, the control histories

are shown in Figure 4.3.

4.4.2 Case 2 Results. The results for Case 2 are shown in Table 4.3 and

Figures 4.4 and 4.5. Case 2 included an obstacle that intruded slightly into the path

Table 4.3: Tabulated Results for Case 2

Original OCP Hybrid OCP VAPF Method
Optimal Cost 23.029 27.128 n/a
Computation Time (s) 2.204 22.139 RT
tf (s) 50.0 50.0 554.2

of the original optimal trajectory. From Table 4.3, the most notable result is that the

hybrid OCP required a computation time that was an order magnitude larger than

that for the original OCP. This result suggests that the solution to the hybrid OCP

is more computationally expensive than the solution of the original OCP despite

the removal of obstacle-avoidance path constraints from the problem formulation.

Another notable feature of Table 4.3 is that the hybrid OCP did not attain as small

a cost as the original OCP. An inspection of the trajectories in Figure 4.4 provides
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(a) Original OCP (b) Hybrid OCP

(c) VAPF Method

Figure 4.4: Trajectories for Case 2
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(a) Original OCP (b) Hybrid OCP

(c) VAPF Method

Figure 4.5: State Histories for Case 2
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an explanation. In the trajectory plot for the hybrid OCP, two sets of arrows are

displayed. Blue arrows show the direction of the CV velocity, while green arrows

give the direction of −∇φ at each point. (The green and red markers for initial and

terminal points have been removed to allow viewing of the arrows.) At the point on the

trajectory that is closest to the obstacle, the blue and green arrows are perpendicular.

Likewise, the history of θ in Figure 4.5(b) shows that it attained a minimum value

of −π/2 radians. Therefore, the hybrid OCP trajectory brought the CV as close as

possible to the obstacle while still maintaining the requirement that −π
2
≤ θ ≤ π

2

(which enforces φ̇ ≤ 0). This constraint explains why the hybrid OCP trajectory

could not approach the obstacle closer and achieve the same cost as the original OCP.

An interesting feature can be observed in the KS history in Figure 4.5(b). Just

before t = 20 s, a small peak forms. At this same time, the CV is approaching the

obstacle from above. In this region of space, the gradients of φatt and φrep point in

nearly opposite directions and the magnitude of −∇φ becomes small. Therefore, a

peak forms because KS must increase to keep the CV’s speed at the optimal level.

An inspection of the VAPF Method results illustrates some of the advantages

and drawbacks of traditional APFMs. The VAPF Method exhibited negligible com-

putational expense. However, it gave the obstacle too wide a berth, and there was

no control of the terminal time. The VDSVAPF Method in the hybrid OCP greatly

improved upon the quality of the trajectory, but at large computational expense.

4.4.3 Case 3 Results. Case 3 was nearly identical to Case 2, with the only

difference being that the position of the obstacle center was moved 5 m in the +x

direction. The primary purpose of Case 3 was to examine the sensitivity of the hybrid

OCP solution to obstacle position. The results for Case 3 are shown in Table 4.4 and

Figures 4.6 and 4.7. The trajectories and state histories in Figures 4.6 and 4.7

appear very similar to those of Case 2, and the observations made for the Case 2

trajectories and state histories apply to Case 3 as well. However, as shown in Table

4.4, the computation time for the Case 3 hybrid OCP was an order of magnitude larger
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Table 4.4: Tabulated Results for Case 3

Original OCP Hybrid OCP VAPF Method
Optimal Cost 25.489 32.003 n/a
Computation Time (s) 2.554 362.907 RT
tf (s) 50.0 50.0 598.3

(a) Original OCP (b) Hybrid OCP

(c) VAPF Method

Figure 4.6: Trajectories for Case 3
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(a) Original OCP (b) Hybrid OCP

(c) VAPF Method

Figure 4.7: State Histories for Case 3
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than for Case 2. This demonstrates that the required computation time for hybrid

OCP is very sensitive to changes in geometry. Additionally, Case 3 further reinforces

the conclusion that the solution of the hybrid OCP is much more computationally

expensive than that of the original OCP.

4.4.4 Case 4 Results. Case 4 was another obstacle-free case, but with a free

final time between the limits of 1900 s and 2000 s. The trajectory from the original

OCP in Figure 4.8(a) shows that the optimal path was a long, looping approach

toward the origin. The trajectory from the VAPF Method in Figure 4.8(c), on

(a) Original OCP (b) Hybrid OCP

(c) VAPF Method

Figure 4.8: Trajectories for Case 4
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(a) Original OCP (b) Hybrid OCP

(c) VAPF Method

Figure 4.9: State Histories for Case 4
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the other hand, quickly corrected from the CV’s initial velocity and then proceeded

straight to the origin with velocity −∇φ. The solution from the hybrid OCP was

again able to deviate from −∇φ and take advantage of the initial velocity and system

dynamics to follow a path that was nearly identical to that of the original OCP, as

seen in Figures 4.8(b) and 4.9(b). The results in Table 4.5 show that the hybrid OCP

solution attained nearly the same optimal cost as the original OCP. However, the

Table 4.5: Tabulated Results for Case 4

Original OCP Hybrid OCP VAPF Method
Optimal Cost 0.04217 0.04218 n/a
Computation Time (s) 1.853 114.177 RT
tf (s) 2000.0 2000.0 584.2

computation time for the hybrid OCP was again much larger than for the original

OCP. This high computational expense thus prevents the hybrid OCP from being a

useful intermediate method between traditional APFMs and the original OCP.

4.4.5 Discussion of Hybrid OCP Computational Expense. The above re-

sults for the hybrid OCP demonstrate that the insertion of an APFM into an optimal

control framework was indeed successful in increasing the optimality of APFM re-

sults. Optimization was possible because the flexibility in the VDSVAPF Method

allowed the CV’s velocity to deviate from −∇φ while still avoiding obstacles. There

had been some expectation that the solution to the hybrid OCP could be less com-

putationally expensive than the solution to original OCP because obstacle avoidance

path constraints were not present in the hybrid OCP. However, these computational

savings were not realized, and the hybrid OCP solutions required significantly more

computation time than the original OCP.

The large computational expense of the hybrid OCP most likely arose from the

higher complexity (in comparison to the original OCP) of the dynamics and of the

cost function. In the original OCP, the dynamics are the linear CW equations, given

in (3.39). However, the dynamics in the hybrid OCP are given by the acceleration for
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the VDSVAPF Method, namely

r̈VDSVAPF = −K̇SKR∇φ−KSK̇R∇φ−KSKRH(φ)ṙ −KD (KSKR∇φ+ ṙ) .

The above dynamics are very nonlinear due to the trigonometric functions (inside

KR), Gaussian functions (inside∇φ), and the many products of states and inputs (K̇S

and θ̇). In addition, all of the information about the obstacles is present within the

dynamics via the definition of φ. In a sense, the complexity due to obstacle avoidance

has been removed from path constraints and placed, instead, in the dynamics.

In addition to the dynamics, the cost function integrand became much more

complicated for the hybrid OCP. In the original OCP, the cost integrand was simply

L = uᵀu.

In the hybrid OCP, the same quantity is expressed as

L = (r̈VDSVAPF −Aaccx)ᵀB−1acc
ᵀB−1acc (r̈VDSVAPF −Aaccx) , (4.12)

a much more complicated expression. The hybrid OCP also includes two more states

(KS and θ) than the original OCP. The nonlinear nature of the dynamics and cost

integrand means that the nonlinear programming routine used within GPOPS-II must

calculate much more complicated gradients than for the original OCP.

4.5 Adaptive Artificial Potential Function Applied with Continuous Con-

trol

Another means of increasing the optimality of APFMs is to use the Adaptive

Artificial Potential Function (AAPF) developed by Muñoz [4]. The AAPF is a special

type of APF where φatt changes shape through time in order to make −∇φatt match

some prescribed velocity profile, ṙd. The prescribed velocity profile, which is chosen by

the designer, should impart some degree of optimality with respect to the cost function
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being considered. Typically, the choice of ṙd has no consideration of obstacles. The

adapting attractive potential causes the system to travel with prescribed velocity ṙd

when far away from obstacles. If ṙd happens to drive the system near an obstacle,

then the obstacle’s repulsive potential (which remains static) “pushes” the system

away to avoid a collision. Then, when the system is again far from the obstacle’s

influence, its velocity converges again to ṙd.

Essentially, the AAPF leverages pre-existing knowledge of obstacle-free velocity

profiles which possess some degree of optimality. The system then follows the velocity

profile except for when it is perturbed by an obstacle’s repulsive potential. One of

the attractive features of AAPFs is that there is an analytic expression for the time

rate of change of the adapting shaping parameters. Therefore, using an AAPF adds

almost no additional computational expense compared to the use of a static APF.

The subsequent section derives the adaptive law for the shaping parameters of

φatt, with only minor notation changes from the original work of Muñoz. After the

AAPF is developed, a continuous control law is needed to cause the system’s velocity

to match the negative gradient of the time-dependent potential. Because the VAPF

Method, as presented in Section 3.3, was derived for time-independent φ’s, it will be

briefly re-derived in Section 4.5.2 to accommodate time-dependent φ’s. Finally, two

example applications are presented in Section 4.5.3.

4.5.1 AAPF Derivation. This section derives the adaptation law for the

shaping parameters in an AAPF. The derivation follows Muñoz [4], with the only

differences being slight changes in notation and the fact that only the two-dimensional

case is presented here. The basic outline of the derivation is as follows: first, define

an error, e, between the prescribed velocity, ṙd, and −∇φ. Then the error time

derivative, ė, is written. The time derivatives of the shaping parameters are then

chosen in order to make ė = −e, or some positive multiple thereof. This ensures that

the components of the error decay exponentially.
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The AAPF is defined as a quadratic,

φ =
1

2
(r − rg)ᵀ M (r − rg) , (4.13)

where rg is the goal location, and M is a positive semidefinite matrix. To enforce the

positive semidefiniteness of M, it is defined in terms of a Cholesky factorization:

M = RᵀR. (4.14)

The matrix R is an upper triangular matrix, termed a Cholesky factor:

R =

ρ11 ρ12

0 ρ22

 , (4.15)

where each ρij is a time-dependent shaping parameter. With this definition, M is

then

M =

 ρ211 ρ11ρ12

ρ11ρ12 ρ212 + ρ222

 . (4.16)

Now, the error is defined as the difference between the prescribed velocity profile, ṙd,

and −∇φ:

e = ṙd +∇φ

= ṙd + M (r − rg) . (4.17)

Taking the time derivative of (4.17) yields

ė = r̈d + Ṁ (r − rg) + M (ṙ − ṙg)

= r̈d +

 2ρ11ρ̇11 (ρ11ρ̇12 + ρ̇11ρ12)

(ρ11ρ̇12 + ρ̇11ρ12) 2 (ρ12ρ̇12 + ρ22ρ̇22)

 (r − rg) + M (ṙ − ṙg) . (4.18)
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It is desired to choose the ρ̇ij’s such that the right-hand side of (4.18) is equal to −e

(or some positive multiple thereof). In order to determine what the ρ̇ij’s should be,

the middle term on the right-hand side of (4.18) must be rearranged with the ρ̇ij’s on

their own. Multiplying through the middle term and rearranging gives

ė = r̈d + Sρ̇+ M (ṙ − ṙg) , (4.19)

where ρ̇ = [ρ̇11 ρ̇12 ρ̇22]
ᵀ, and S is

S =

 2ρ11 (r1 − r1g) + ρ12 (r2 − r2g) ρ11 (r2 − r2g) 0

ρ12 (r1 − r1g) 2ρ12 (r2 − r2g) + ρ11 (r1 − r1g) 2ρ22 (r2 − r2g)

 .
(4.20)

In order to solve for ρ̇, the right hand side of (4.19) is set equal to −KMe, where

KM is a positive scalar. Solving for ρ̇ then yields

ρ̇ = Sᵀ (SSᵀ)−1 (−r̈d −M (ṙ − ṙg)−KMe) . (4.21)

This expression for ρ̇ causes ė = −KMe, and thus the components of the error decay

exponentially. It should be noted that the matrix SSᵀ becomes singular when r = rg,

so in practice, the adaptation must be halted when the vehicle is in the immediate

vicinity of the goal.

4.5.2 Time-dependent APFs in the VAPF Method. Now that the adaptation

law for the shaping parameters has been defined in (4.21), a continuous control law is

needed which causes the vehicle’s velocity to match the negative gradient of the time-

dependent AAPF. Previously, the AAPF has been used only in conjunction with an

impulsive control law. Because the VAPF Method was originally derived in Section

3.3 for static φ’s, it will be re-derived here to accommodate time dependence. Again,
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the VAPF is defined as

φv =
1

2
(∇φ+ ṙ)ᵀ (∇φ+ ṙ) .

Now, the time derivative of φv is

φ̇v = (∇φ+ ṙ)ᵀ
(
H (φ) ṙ +∇∂φ

∂t
+ r̈

)
. (4.22)

The acceleration is chosen to make φ̇v negative semidefinite:

r̈ = −H (φ) ṙ −∇∂φ
∂t
−Kd (∇φ+ ṙ) , (4.23)

where Kd is again a positive definite, diagonal matrix. In the particular case of the

two-dimensional AAPF with stationary goal, the partial time derivative term in (4.23)

is given by

∇∂φ
∂t

=

 2ρ11ρ̇11 (ρ11ρ̇12 + ρ̇11ρ12)

(ρ11ρ̇12 + ρ̇11ρ12) 2 (ρ12ρ̇12 + ρ22ρ̇22)

 (r − rg) , (4.24)

and the ρ̇ij values are calculated from (4.21). Substitution of the acceleration from

(4.23) into (4.22) yields

φ̇v = − (∇φ+ ṙ)ᵀ Kd (∇φ+ ṙ) , (4.25)

which is a negative semidefinite quantity. Therefore, the acceleration in (4.23) causes

ṙ to converge exponentially to −∇φ, as shown in Section 3.3. For second-order, fully

actuated linear systems, the control required to achieve this acceleration is

u = B−1acc (r̈ −Aaccx) , (4.26)

.
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4.5.3 AAPF Example Applications. The key to achieving some degree of

optimality with an AAPF is the selection of the prescribed velocity profile, ṙd. For

linear systems, on such choice for ṙd could be velocity which results from linear

quadratic regulator (LQR) control. This section presents idealized satellite rendezvous

scenarios which utilize a steady-state LQR velocity profile for ṙd. The cost function

used here to generate the steady-state LQR solution is

J =

∫ ∞
0

xᵀQx+ uᵀu dt, (4.27)

where the positive definite, diagonal matrix Q was chosen with very small elements to

approximate the minimum control stabilizing solution. The resulting optimal control

is of the form

u∗ = KLQRx, (4.28)

where KLQR is a constant gain matrix [31]. This control law can be substituted back

into the linear dynamics to determine the ṙd and r̈d to use in the AAPF formulation:

ṙd
r̈d

 = (A−BKLQR)x. (4.29)

And for a second-order, fully actuated linear system in the same state-space form as

(3.34), this gives

ṙd = ṙ (4.30)

r̈d = (Aacc −BaccKLQR)x. (4.31)

The first cases has no obstacles. The initial conditions for the CV are r(0) =

[0, 300] m and ṙ(0) = [1, 0] m/s. The scalar KM is set as 0.1, and the initial value for

M is

M(0) =

0.01 0

0 0.01

 . (4.32)
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Figure 4.10 is an animation of the AAPF and the CV traveling under its influence.

(Please note that animations are guaranteed to appear correctly only in Adobe Acro-

bat and Adobe Reader software.) The initial value of M gives a −∇φ which does not

Figure 4.10: Animation of AAPF with Steady-state LQR Prescribed Velocity and
No Obstacles (Click image to play)

match ṙd, and the adaptation law quickly flattens and skews φ, thereby decreasing

the error between ṙd and −∇φ exponentially. As the animation progresses, φ contin-

ually adapts to drive the CV along a curved path toward the origin, just as the LQR

control would have done. Figure 4.11 displays the two-dimensional trajectory, state

histories, control histories, and ρ histories for the simulation.

Now two obstacles will be placed into the geometry. One of the obstacles will

intersect the original path from the obstacle-free case. An important consideration

is the form of the repulsive potentials used for the obstacles in an AAPF. Because

the attractive potential continuously adapts, there is a possibility that it could over-

power the Gaussian repulsive potentials used previously, thereby allowing a collision.

Therefore, repulsive potentials which go to infinity at the obstacle boundaries should
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(a) Chase vehicle trajectory (b) Chase vehicle state histories

(c) Chase vehicle control histories (d) AAPF ρ histories

Figure 4.11: Results for AAPF Simulation with Steady-state LQR Prescribed Ve-
locity and No Obstacles
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be used. The repulsive potentials used here are of the form:

φrep,i =
λi(

exp
(
r̃ᵀobs,iNir̃obs,i −R2

i

)
− 1
)2 , (4.33)

where Ri is the radius of the ith obstacle, and the definitions of λi, r̃obs and Ni are

the same as in Section 3.4.

Figure 4.12 is an animation for the case with two obstacles. Until the CV comes

Figure 4.12: Animation of AAPF with Steady-state LQR Prescribed Velocity and
Two Obstacles (Click image to play)

near to an obstacle, its trajectory (and the shape of φ) appears nearly identical to

that in Figure 4.10. When the repulsive obstacle potentials “push” the CV away, the

attractive potential adapts to the perturbed velocity and continues to cause −∇φatt

to converge to ṙd. The cost function value for the AAPF simulation here cannot be

compared to a numerical solution of the original OCP in a completely fair manner

because the AAPF simulation is based on an infinite horizon cost function, and also

because the AAPF simulation must be terminated early to avoid SSᵀ becoming nearly

singular in the vicinity of the origin. The two-dimensional trajectory, state histories,

control histories, and ρ histories are shown in Figure 4.13. The effect of the distur-
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bance from the obstacles may be first seen in the state and control plots near t = 200

s.

(a) Chase vehicle trajectory (b) Chase vehicle state histories

(c) Chase vehicle control histories (d) AAPF ρ histories

Figure 4.13: Results for AAPF Simulation with Steady-state LQR Prescribed Ve-
locity and Two Obstacles

In summary, this section has implemented an AAPF by means of the VAPF

Method. Using an AAPF is a computationally efficient way of increasing optimality

via the specification of an ṙd with optimal characteristics. In some cases, such as those

with very complicated system dynamics, densely packed obstacles, or complicated cost

functions, such an ṙd may be unknown. But for cases with well-understood dynamics
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and sparsely packed obstacles, implementation of an AAPF is an attractive choice due

to the negligible increase in computational expense compared to traditional APFMs.

4.6 Summary and Future Avenues for Optimization

This chapter has presented an investigation into increasing the optimality of

APFMs. The VAPF Method was augmented with more velocity flexibility to become

the VDSVAPF Method. The original OCP was then translated into the hybrid OCP

by insertion of the VDSVAPF Method dynamics. In the hybrid OCP, the independent

variables were no longer the physical thrust values for the CV, but rather the control

parameters K̇S and θ̇ from the VDSVAPF Method. The hybrid OCP formulation

also allowed for the removal of obstacle avoidance path constraints from the problem.

Numerical solutions to the original and hybrid OCPs on four test cases showed that,

for simple geometries, the hybrid OCP solution matched the original OCP solution

exactly. For cases with obstacles, the hybrid OCP solution came as close as possible to

the original OCP solution while still respecting the limits on θ. However, the hybrid

OCP approached proved to be excessively computationally expensive due to its more

complicated dynamics and cost function representation.

Then, the AAPF was implemented with the VAPF Method. The AAPF formu-

lation allows the designer to impart optimality from a foreknown velocity profile into

the time-varying shape of the AAPF. In addition, the adaptation law for the shaping

parameters of the AAPF is an analytical expression, meaning that use of an AAPF

adds negligible computational expense compared to a static APF. The AAPF was

implemented via the VAPF Method in two example cases using prescribed velocity

profile resulting from steady-state LQR control. This approach proved to be an at-

tractive choice due to its ability to obtain more optimal APFM results with negligible

added computational expense.

Apart from the methods addressed in this chapter, other avenues for increasing

the optimality of APFMs may be studied in future research. First, a new hybrid OCP

may be formulated which uses the APF shaping parameters, rather than APFM
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control parameters, as independent variables. While there can be many shaping

parameters within a given APF (especially with a large number of obstacles), an

appropriate first step might be to focus only on the attractive potential shaping

parameters. Based on the observations of the hybrid OCP results in this chapter,

however, it is expected that a hybrid OCP using APF shaping parameters would

exhibit similarly large computational expense. Another avenue for investigation could

be a static optimization over APF shaping parameters, i.e. finding the best constant

shape for an APF. While this approach would not match the true optimal solution as

closely as a hybrid OCP, it would likely be less computationally expensive.
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V. Conclusion

Continuous control APFMs and methods of addressing their suboptimality have been

studied in this thesis. The Velocity Artificial Potential Function Method developed

in Chapter III is the first known continuous control APFM which causes a system’s

velocity to converge to −∇φ. Applicable to general forms of φ and any fully actuated

system, the VAPF Method defines a second potential function (the velocity artificial

potential function) in the velocity space of the vehicle which has −∇φ as its minimum

point. An acceleration law is determined which causes the time derivative of the VAPF

to be negative semidefinite and gives exponential convergence of the system’s velocity

toward −∇φ. The acceleration law is then inserted into a given system’s dynamics to

solve for the appropriate control. The method was applied to an idealized spacecraft

rendezvous scenario with obstacles. The numerical results confirmed the theoretical

convergence propertices, and showed that the chase vehicle was successfully driven to

the target vehicle while avoiding obstacles.

The second half of this manuscript investigated methods of addressing the sub-

optimal results that APFMs typically produce and whether improvements in optimal-

ity can be made while preserving the computational efficiency which makes APFMs

attractive. The first approach was to insert a continuous control APFM directly into

an optimal control framework, forming the so-called hybrid OCP. Because the APFM

would eliminate the need for obstacle avoidance path constraints in the problem for-

mulation, some computational savings were thought to be possible in comparison

to the original OCP. The VAPF Method was modified into the VDSVAPF Method,

which allows the system velocity to deviate from −∇φ while still avoiding obstacles;

this modification allowed the freedom needed for optimization. Results from solving

the original and hybrid OCPs on four test cases produced several conclusions. First,

on simple geometries without obstacles, the hybrid OCP solution was able to exactly

match the solution to the original OCP, despite being a different formulation. The

flexibility of the VDSVAPF Method allowed several desirable capabilities not easily

achievable with traditional APFMs, such as specification of terminal time and more
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gradual obstacle avoidance maneuvers. However, in all but the simplest case, the

computational time required to solve the hybrid OCP was significantly larger than

for the original OCP. This increase in computational expense was most likely due to

the greater complexity of the VDSVAPF Method dynamics and the fact that the cost

function expression was more complicated in the hybrid OCP. This high computa-

tional expense precludes the usefulness of the hybrid OCP solution as an intermediate

between traditional APFMs and the original OCP, at least in cases similar to the ones

studied in this thesis.

The second approach utilized Muñoz’s Adaptive Artificial Potential Function [4],

which allows the optimality from foreknown desirable velocity profiles to be imparted

into the APF formulation. The AAPF changes shape through time to cause the

negative gradient of its attractive potential to match the prescribed velocity profile.

One attractive aspect of the AAPF is that the adaptive behavior of the shaping

parameters is given through an analytical expression, and thus use of an AAPF adds

only negligible computational expense compared to a static APF. The AAPF was

implemented in a continuous control scheme for the first time via the VAPF Method.

Two example cases using a prescribed velocity resulting from LQR control showed

that using an AAPF is a useful way of adding some degree of optimality to APFM

results with minimal added computational expense.

There are several areas where future work related to these topics may provide

useful results. One of the drawbacks of APFMs that this thesis did not address is

that of local minima. Several schemes for addressing the local minimum problem in

APFMs have been developed previously, and it would be interesting to see one of

those schemes combined with the VAPF Method. Regarding the hybrid OCP, there

is room for investigating its computational expense on problems with different types

of cost functions and more complicated dynamics; there may exist some problems for

which the hybrid OCP is indeed a useful intermediate between traditional APFMs

and the orignal OCP. Finally, there are other avenues which could be investigated

for achieving optimal results with APFMs. One such avenue would be putting an
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APFM into an optimal control framework where time-varying shaping parameters of

an APF, rather than the APFM control parameters, are the independent variables.

Additionally, performing a static optimization over APF shaping parameters (i.e.

finding the best constant shape for an APF) could prove to be a less computationally

expensive way to obtain more optimal results from APFMs.
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Appendix A. Alternate Formulations for the VDSVAPF Method

As it is presented in Section 4.2, the desired velocity in the VDSVAPF Method is

defined as

ṙ = −KSKR∇φ. (A.1)

This formulation necessitates limits on KS and θ in order to maintain the requirement

of nonincreasing φ, i.e. KS ≥ 0 and π
2
≤ θ ≤ π

2
. Because it is generally desirable

to have as few constraints as possible in an optimal control problem, two alternate

formulations for the desired velocity in the VDSVAPF Method were tested. These

alternate formulations removed some of the constraints in the hybrid OCP.

The first alternate formulation defines the desired velocity as

ṙ = −K2
SKR∇φ. (A.2)

Now that the KS term is squared, the KS ≥ 0 constraint may be removed from the

hybrid OCP. With this formulation, the VAPF is now

φv =
1

2

(
K2
SKR∇φ+ ṙ

)ᵀ (
K2
SKR∇φ+ ṙ

)
. (A.3)

Taking the time derivative of (A.3) yields

φ̇v =
(
K2
SKR∇φ+ ṙ

)ᵀ (
2KSK̇SKR∇φ+K2

SK̇R∇φ+K2
SKRH(φ)ṙ + r̈

)
. (A.4)

The acceleration to make φ̇v negative semidefinite is now

r̈ = −2KSK̇SKR∇φ−K2
SK̇R∇φ−K2

SKRH(φ)ṙ −KD

(
K2
SKR∇φ+ ṙ

)
. (A.5)

When this alternate formulation was implemented and solved in GPOPS-II,

the computation times were actually marginally larger than those for the original

VDSVAPF Method (Section 4.4), despite the removal of the nonnegativity constraint

on KS. This was most likely due to the additional state-input product term, 2KSK̇S,

66



which is not present in the original formulation. Because of its higher computation

times, this alternate formulation was not used.

The second alternate formulation does away with KS and θ entirely. Recall that

the purpose of KS and θ is to allow the vehicle’s velocity to deviate from −∇φ so

long as its direction is within π/2 radians of −∇φ. However, this same effect can be

achieved by applying a single Cholesky-factored matrix to −∇φ. The terms in the

Cholesky factors may take any real value, and the resulting matrix is guaranteed to

be positive semidefinite. With this in mind, the desired velocity is defined as

ṙ = −RᵀR∇φ, (A.6)

where the Cholesky factor R is

R =

ρ11 ρ12

0 ρ22

 . (A.7)

This formulation has no constraints on the values of the ρij’s, and also the trigonomet-

ric functions (which were inside the rotation matrix KR) have been removed. With

this definition for desired velocity, the VAPF is now

φv =
1

2
(RᵀR∇φ+ ṙ)ᵀ (RᵀR∇φ+ ṙ) . (A.8)

Taking the time derivative of φv gives

φ̇v = (RᵀR∇φ+ ṙ)ᵀ
(

˙(RᵀR)∇φ+ RᵀRH(φ)ṙ + r̈
)
, (A.9)

where

˙(RᵀR) =

 2ρ11ρ̇11 (ρ11ρ̇12 + ρ̇11ρ12)

(ρ11ρ̇12 + ρ̇11ρ12) 2 (ρ12ρ̇12 + ρ22ρ̇22)

 . (A.10)
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The acceleration to make φ̇v negative semidefinite is now

r̈ = − ˙(RᵀR)∇φ−RᵀRH(φ)ṙ −KD (RᵀR∇φ+ ṙ) . (A.11)

When this second alternate formulation was implemented and solved in GPOPS-

II, the computation times were significantly larger than those for the original VDSVAPF

Method (Section 4.4), despite the removal of two constraints (on KS and θ) and the

deletion of trigonometric functions. The suspected reasons for the larger computa-

tional expense are twofold. First, this alternate formulation adds one additional state

and one additional input compared to the original formulation (there are three ρij’s

and three ρ̇ij’s). Secondly, there are many more state-input product terms in this

formulation, as can be seen in (A.10). Because of its larger computation times, this

alternate formulation was not used.
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